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In this work we present a model for image formation in optical coherence microscopy. In the spectral domain
detection, each wavenumber has a specific coherent transfer function that samples a different part of the ob-
ject’s spatial frequency spectrum. The reconstruction of the tomogram is usually accurate only in a short depth
of field. Using numerical simulations based on the developed model, we identified two distinct mechanisms
that influence the signal of out-of-focus sample information. Besides the lateral blurring induced through de-
focusing, an additional axial envelope contributing equally to the signal degradation was found. © 2010 Op-

tical Society of America
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1. INTRODUCTION

Optical coherence tomography (OCT) is a biomedical im-
aging technique that provides cross-sectional views of the
subsurface microstructure using spectral interferometry.
It has received considerable interest as a minimally inva-
sive imaging technique. Detection in the spectral or Fou-
rier domain (FDOCT), recording interferograms of a large
number of wavenumber-channels in parallel or consecu-
tively, as in swept source OCT, allows reconstructing the
sample’s depth structure at a given lateral scanning posi-
tion in a parallel fashion without axial scanning. Com-
pared to point scanning techniques, this results in an im-
portant speed advantage, and paired with the
fundamental signal benefit provided by the detection in
the Fourier domain [1], it makes FDOCT a confirmed tool
for minimally invasive in vivo applications.

Whereas the axial resolution of OCT is determined by
the coherence length of the employed light source, the lat-
eral resolution is specified by the numerical aperture
(NA) of the imaging optics. Classical OCT uses focusing
optics resulting in a limited lateral resolution of
10-20 um, yet providing a near constant lateral defini-
tion over a long axial range. The combination of OCT with
high NA optics results in a combined depth sectioning by
means of the coherence and the confocal gates and is
termed optical coherence microscopy (OCM) [2]. This com-
bined depth sectioning is advantageous in strongly scat-
tering media. It resolves fine sample structures [3], and
the available phase information can be used for phase im-
aging of thin cell samples [4,5]. However, the short depth
of field (DOF) imposed by the confocal gate compromises
Fourier domain optical coherence microscopy’s
(FDOCM)’s parallel depth extraction, and it necessitates
three-dimensional scanning to acquire the volumetric
sample structure.

Many attempts have been made to overcome this fun-
damental dilemma and to take advantage of high lateral
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resolution and parallel depth extraction at the same time.
Strategies to circumvent this compromise involve, on one
hand, digital correction of the induced artifacts [6-8] and,
on the other hand, hardware solutions [9-12]. Following
the same reasoning, we previously described an extended
focus scheme for FDOCM [13].

The works on digital correction often use Gaussian op-
tics approximations to deduce the proposed algorithms.
Ralston et al. [8,14] developed a more advanced signal
model for the formulation of the inverse problem that re-
constructs a corrected tomogram. While the first models
were still based on Gaussian paraxial optics, they later
extended the formulation to non-paraxial optics [15]. In
general, most of the proposed hardware solutions aimed
at the production of an elongated focus defining a needle-
like probing volume. Typically, these attempts ignore,
however, the underlying image formation and tomogram
reconstruction.

Compared to confocal microscopy, for which the image
formation was studied in great detail and is well docu-
mented in the literature, there exists relatively little
work on image formation in OCT. Moreover, the tomo-
grams obtained in FDOCT depend on both the image for-
mation, i.e., the signal recorded, and the tomogram recon-
struction. Many authors used a simple layered media
approach and defined the sample as a stack of regions of
homogenous refractive indices with discrete interfaces de-
fining a reflectivity depth-profile [16]. Fercher et al. [17]
applied the first order Born diffraction for their signal
model and defined the scattering potential as the sample
structure. It should be considered, however, that this
sample structure comprises the squared wavenumber,
which inevitably has implications when reconstructing
the FDOCT signal and taking the Fourier transformation
along the wavenumber coordinate. Sheppard et al. [18]
showed an interesting analysis of the image formation in
low-coherence and confocal interference microscopes,
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starting with the image formation in a conventional mi-
croscope. Yet, that report neither treated the physical ori-
gin of the structural signal nor discussed the specific ef-
fects of FDOCT, because it considered a time-domain
system. A notable work by Coupland and Lobera [19] com-
pared the image formation in holography, three-
dimensional microscopy, and OCT, describing them as a
linear filtering process. Although OCT in the low NA ap-
proximation can indeed be described as a linear filtering,
this is not sufficient in general.

Here, we present a model for image formation in OCT,
and especially OCM in the Fourier domain, using the
principle of the generalized aperture, introduced by Mc-
Cutchen [20], and the coherent transfer function (CTF),
known from the pioneer work by Sheppard et al. [21] and
Gu [22]. The FDOCT system can be interpreted as a mul-
tiplexed  interference  microscope, = where each
wavenumber-channel of the detector has its distinct CTF.
If a confocal three-dimensional scan was performed, the
signal recorded in each wavenumber-channel would be in-
deed the result of the linear filtering of the sample with
the channel’s specific CTF. But FDOCM attempts to re-
construct the three-dimensional sample structure from
the wavenumber multiplexed signal, without scanning in
the axial direction. The sampling of the spatial frequency
spectrum is in this case defined by the exact shape of the
channel’s specific CTFs and becomes, in general, increas-
ingly flawed for larger NAs.

Based on this model, tomograms were simulated to evi-
dence the precise effect of the system CTFs. We show that
the DOF has two origins. First, the CTF has in general a
curved shape, which introduces a defocusing and results
in the lateral blurring of the out-of-focus structures. Sec-
ond, the CTF has a finite support, i.e., a span with toler-
able transmission values, along the axial spatial frequen-
cies and confuses the signal within this window. In the
reconstructed tomogram, this is manifested in an addi-
tional axial amplitude envelope. In the case of identical
Gaussian optics in both the illumination and the detec-
tion paths, these two mechanisms contribute equally to
the signal degradation.

Based on these simulation results, we discuss the ideal
CTF for FDOCT, producing an extended DOF. The formu-
lation that we present here is developed in a general form
and considers also decoupled and independently defined
illumination and detection paths. This allows testing spe-
cific optical implementations that strive toward this ideal
CTF.

2. THEORY

A. Description of the Setup

As displayed in Fig. 1, a spectrometer-based spectral do-
main OCT system is considered. Light from a broadband
illumination source is delivered through a single mode fi-
ber, collimated, and split by a free-space beam splitter
into reference and sample arms. In the sample arm the
light is focused into the sample by means of a sample ob-
jective. Classical OCT uses lenses with relatively long fo-
cal lengths resulting in low NAs. In contrast, OCM em-
ploys objectives with significantly larger NAs. A scanning
mechanism allows the illumination and detection beam to

Vol. 27, No. 10/October 2010/J. Opt. Soc. Am. A 2217

Source
Illumination r\
Detection
“—
2D- Scannlng
Spectrometer

N\ / \ Reference

A sample

Fig. 1. (Color online) Layout of a spectrometer-based spectral
domain OCT setup. Illumination and detection occurs through
single mode fibers, and well defined illumination and detection
modes. The free-space beam splitter decouples the detection from
the illumination optics.

be scanned over the sample in both lateral directions. The
incident light is scattered by the sample structure, and
part of this light is collected by the sample objective. This
sample light is recombined with the reference light at the
beam splitter and coupled into the detection fiber. Both il-
lumination and detection occur through single mode fi-
bers and thus well defined illumination and detection
modes. Fiber based systems, which use a fiber coupler to
split and recombine the reference light in a Michelson
configuration, use by definition the same optics for illumi-
nation and detection. A free-space beam splitter on the
other hand offers the possibility to use different optics
and define specific and distinct illumination and detection
modes. Although more demanding in the alignment of the
system, this decoupling of illumination and detection op-
tics provides additional freedom in the system design and
can be used to obtain improved imaging performance.

The interference signal coupled into the detection fiber
is recorded as a function of its wavelength A in the case of
a spectrometer-based system. Remapping from \ to %
=27/\ provides the signal

Pioi(ky) =S retlly)[* +[S(ky)[* + S(k,)S k)
+8,(kp)Sreilky). 1)

Without discussing the details of this crucial remap-
ping, the signal is now given multiplexed into N
wavenumber-channels, with %, being the central wave-
number of the channel p, which has a narrow spectral
width k. To simplify the expressions, we approximate
each wavenumber-channel as quasi-monochromatic, in
which case the time dependence of the power signals
drops out, and we write Py, (k) =(Py(t,kp)) to express the
average power in the wavenumber-channel %,. In this
analytical notation, the signal generally comprises the in-
dependent terms from the reference and sample arms and
two complex conjugate interference terms. Instead of re-
cording the wavenumber-channels in parallel on a line
camera, swept-source based systems acquire them over
time, obtaining a similar signal. With dual balanced de-
tection, the two independent terms are directly sup-
pressed in this case. In spectrometer-based systems, the
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term |S,.4? can in general be estimated by averaging of
many acquisitions or prior recording. |S,?> is much
smaller than the reference signal and can be ignored.
Many strategies to isolate a single one of the two complex
conjugate signal terms exist [23-26]. In the simplest case
the reference arm-length is adjusted to have a shorter ref-
erence path length than any signal from the sample arm
to avoid the overlap of the conjugate terms. For the fol-
lowing we denote the term Ps(kp)zSS(kp)Sief(kp) as the
complex valued signal of FDOCM.

B. Generalized Aperture

First we would like to find expressions for the focal fields
of the illumination and detection modes beyond the
paraxial approximation, but considering scalar fields.
This task has been widely studied, and the work of Gu
[22] was closely followed. The interest here was to develop
a signal model for FDOCT, where the dependence on the
wavenumber of all expressions is crucial. Most of the lit-
erature on focal field calculations uses normalized coordi-
nates and monochromatic waves, masking this depen-
dence. For this reason we derive here the expression of
the focal field for a general broadband light source.

As displayed in Fig. 2, the sample objective of focal
length f is assumed to obey Abbe’s sine condition and to
perfectly focus an incident plane wave. It is characterized
by a planar incident principal plane P; and an object-side
principal plane P, of spherical shape. According to the
Rayleigh—Sommerfeld diffraction integral, the field as a
function of space and wavenumber at some point r in the
focal volume can be expressed as a function of the field in
the principal plane P, of the objective as

_ ik exp(ikf) _ exp(—ikh)
Ur,k)=—— | UPy,k)————cos(n,h)do.
h
2 P,

(2)

In the derivation of this expression from the Maxwell
equations, monochromatic waves are usually considered.
Time derivatives are trivial in that case and give rise to

(a) (b)
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the ik factors in the above expression. If the field is writ-
ten in a general manner in the spectral domain as a func-
tion of &, the time derivatives are still identical, and the
same expression holds. The parameter 2 used in the
above expression marks the difference to the quasi-

monochromatic &, used previously. The field Ulr,k) de-
fines the field at a given point in space as a function of %,
opposite to U(r,k,) that describes the time signal of a
monochromatic field with wavenumber %, in space. It
would be more common to express the spectral envelope

in terms of w, with the Fourier transformation U’(w)
=[U(t)exp(-iwt)dt, indicated by the overtilde. To consis-
tently evidence all k= w/c factors, Uk)=cU'(») was used
here.

As presented in Fig. 2, h is the distance between a
point on the principal plane P, and a point r within the
focal volume, and n is the surface normal of P,. Given the
geometry of the principal plane and if /> |r| it can be ap-
proximated that cos(n,k)~1. Within the Debye approxi-
mation h—f=-r-p, where p is the unit vector pointing
from the focal point toward P,. Using further do=£2d(),
with Q being the solid angle of the aperture, we find

- ik -
Ulr,k) = %f U(p,k)exp(ikp - r)dQ. (3)
Py

To express the temporal evolution of the field in the gen-
eral case of an arbitrary spectral envelope, the inverse

transform U(¢)=1/2m) [ ﬁ(k)exp(ickt)dk is computed as

U t—i—fff Ute.) (ickt)exp(ikp - ¥)E2dkdQ
(r,)_4ﬂ2 e, P exp(ickt)exp(ikp - r .

(4)

An additional factor 2 was evidenced, and we are free
to interpret the integral as a volume integral with the vol-
ume element dQ=k2dkdQ). We define the three-
dimensional vector Q with length |Q|=Q=%k and orienta-
tion Q/@Q=p. The focal field as a function of space r and
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Fig. 2. (Color online) (a) Schematic of the situation at the sample objective. The field incident on the principal plane P; as a function of

the radial coordinate p is transmitted by the objective to the principal plane Py, which has the shape of a sphere cap. The illumination
field Uy, is scattered by the susceptibility y to produce the field U,. Only its overlap with the detection mode my,; enters detection. (b)
Principle of the generalized aperture. The plane wave components of the field in the focal plane are located in the spatial frequency
domain on a sphere cap of radius k,. The angular distribution of the amplitude on this sphere cap corresponds to the angular distribution
in the sample objective’s principal plane. (c¢) The three-dimensional Fourier transform of the generalized aperture produces the field in
the focal region.
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time ¢ is now defined as the three-dimensional inverse

Fourier transform of (~J(Q)=2ﬂ-f[~J(p,k)/k, and we can
identify Q as the three-dimensional spatial frequency. A
factor of 27 was added to compensate for the 1/(87°) term
in the Fourier transformation. The additional phase term
adjusts the delay between the different spectral compo-
nents:

U(r,t) =i FT3p{U(Q)exp(ic@t)}. (5)
For convenience we use for U(r,t) the units of

W12 m-1, and accordingly we have [U(Q)]=WY2 m2. The
formulation for a general field was necessary in order to
evidence the integration along the wavenumber and to
identify the volume integral dQ. Returning now to the
monochromatic case of wavenumber k,, the infinitesi-
mally narrow spectral width defines in this case a spheri-

cal cap in the spatial frequency domain 5’(Q) |kp

= l:](Q,kp)=2ﬂff](p,k)5(Q—kp)/Q. The infinitely thin
shell 8(@Q-%),) is usually referred to as the Ewald sphere.
Dropping the harmonic time variation, we now can write

Ulr,k,) =i FTsHUQ.E,)},

U(Q,k,) = - i FTap{U(r,k,)}. 6)

This expression corresponds to McCutchen’s general-
ized aperture [20]. The present derivation is however an
important generalization, since it is valid for a field with
an arbitrary spectral envelope with the monochromatic
wave being simply a special case. The similarity between

the spherical shell U (Q,kp) and the principal plane Py of
the sample objective is evident. Within the Debye ap-
proximation, the physical aperture is located in the far
field of the focal volume, and hence the amplitude at a
given location on this aperture contributes to the focal
spot with a plane wave. This approximation is only valid
in a confined region around the theoretical focus, but nev-
ertheless also for very high NAs. The limitation to scalar
waves and ignoring the polarization thus represent the
most limiting assumption in the present formulation.
The re-interpretation of the field distribution in the ob-
jective principal plane as spatial frequency spectrum of-
fers now a convenient way to compute the focal field in
the sample volume for both the illumination and detec-
tion modes. The field as a function of p in P; can safely be
calculated with paraxial optics approximations, defined
by the illumination and detection optics. For the moment
a collimated Gaussian beam with 1/e2 intensity waist w,
is assumed to illuminate the backaperture of the sample
objective that has a circular aperture of radius py. The ob-
jective’s NA is taken as NA=py/f. The Gaussian beam is
thus truncated, characterized by the truncation param-
eter k=wqy/py. The waist is taken to be independent of the
wavenumber k,. This situation is more or less achieved
when broadband light is delivered through a single mode
fiber and collimated with an achromatic lens. Since the fi-
ber mode diameter scales roughly with the wavelength,
the collimated beam, which corresponds to the far field
pattern of the fiber mode, is approximately constant for

Vol. 27, No. 10/October 2010/J. Opt. Soc. Am. A 2219

different k,’s. With the sine condition as the apodization
function f sin #=p and the incoming field is scaled with a
term cos2 0=(s/Q)V2, UP2(fq/Q)=UP1(fq/Q)(s/Q)V2. 1t is
now possible to construct the generalized aperture:

= ~ q 5(Q_kp)
U(Q,k,) = 2ufUr| f— | ————, 7
(Q,kp) = 27fU (fQ> Q (7)

where the field U in Py,Py is given in W2, We use Q
=q,e1+q,es+ses, with e; being the unit vectors of an or-
thonormal basis, q=g,e;+q,e,, and g=|q].

Figure 2(b) shows the generalized aperture for an ob-
jective with a NA of 0.5 and x=0.7. For the numerical
implementation, the Dirac expression was approximated
with a Gaussian envelope of width ok=£,/150. Assuming
circular symmetry around s, the generalized aperture is
displayed as a function of the axial spatial frequency s
and the lateral component ¢g. Computing the three-
dimensional inverse Fourier transformation, the field in
the focal volume is found as depicted in Fig. 2(c). To sim-
plify and accelerate this computation, and using the cir-
cular symmetry of the expression, an implementation of
the fast Hankel transform along ¢ and the chirped
z-transform along s were used.

C. Scattered Field

With the illumination and detection modes in the focal
volume known, the interaction with the sample is now
considered. According to the first order Born approxima-
tion and for scalar waves, the field scattered by a sample
inhomogeneity at the quasi-monochromatic wavenumber
k, expressed on a surface lying outside the inhomogeneity
and parameterized by r, is

U ) k2 SN )exp(— ikylr,—r|)
r,,ro,k,) = — (T, r-rg)——mM—
s\t 0s/vp 4 v 11 )X 0 |I‘S—l‘|

(8)

Here x(r)=n?(r)-1 is the sample susceptibility, and r
defines the position of this sample structure with respect
to the illumination field. The scanning mechanism varies
ry, either by redirecting the beam to another point on the
sample or by physically moving the sample with respect
to the beam. The often used scattering potential F(r,k%)
=k2x(r)/(47) depends explicitly on the wavenumber %. To
keep track of all wavelength dependent variables, here
the susceptibility was chosen instead to express the
sample structure. It is assumed to be non-dispersive and
hence independent of k.

The discussed situation is outlined in Fig. 2(a). To
quantify the amount of the scattered field collected by the
detection optics, the mode overlap between the scattered
field and the detection mode is computed. For this proce-
dure, the principal plane Py on the object side of the
sample objective is chosen. Both the spatial and fre-
quency modes have to match to assure coupling. Since we
stipulated a set of discrete wavenumber modes the
amount of the field scattered at a given wavenumber
coupled into its corresponding wavenumber-channel be-
comes
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Sy(ro,kp) = f Uy(rs,ro,kp)mae(rs, kp)do, 9)
P

2

in the space-time coordinate system, where the mode m 4ot
was defined in units of 1/m, yielding [S,]= W2,

The scattered field U, is propagating away from the fo-
cal volume. The portion of interest propagates along the
negative z direction toward the detection optics. The de-
tection mode mg.; on the other hand was deliberately de-
fined as propagating in parallel with the illumination
mode in the positive z direction. This definition corre-
sponds to the mode that would be produced if the sample
was illuminated through the detection fiber. The true de-
tection mode however propagates in the opposite direc-
tion. In the overlap integral the target mode usually ap-
pears in its complex conjugated form. Since taking the
complex conjugate is equivalent for a monochromatic
wave to a change of the direction of propagation, the com-
plex conjugate could be omitted with the present defini-
tion of m gg;.

D. Coherent Transfer Function

Based on the former analysis, we can recast expression
(9) in a more complete form. Combining Eqgs. (8) and (9)
and inverting the order of integration produces

k2
Ss(r07kp) = _pf Uill(rykp)X(r - rO)
aw ),

exp(—ik,|r, —r|)
X mdet(rs’kp) ——dodV.
P r

5 | s_r‘
(10)

Comparing the inner integral of this result with Eqgs. (2)
and (3), taken for the monochromatic case, we find

exp(—ikp|r; —r|)
f mdet(rs9kp) do
P |rs - I‘|

2
- 127 exp(-ik,f)
D — R G IR (11)
kp

and, hence, ignoring the phase term exp(-ik,f),
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—ik
Ss(r07kp) = TPJ Uill(rykp)mdet(r7kp)X(r - rO)dV'
\4

(12)

The signal coupled into the detection fiber is expressed
as the product of the illumination field and the detection
mode, convolved with the sample structure according to
the scanning r(. The illumination field can be separated
into the illumination mode Uy(r,k,)=AV2(k,)my(r,k,)
with [my]=[mge]=1/m and the spectral envelope A(kp),
defining the power in each wavenumber-channel.

Taking into account the reference amplitude S
=A1/2(kp) the signal Ps(ro,kp)=SsSjef can now be ex-
pressed. With a complete three-dimensional scan r(, as
performed in confocal microscopy, the recorded signal
could be Fourier transformed to the spatial frequency do-
main along all three spatial coordinates. Since in the spa-
tial coordinates the sample structure was convolved with
the product of the illumination and the detection mode, in
the spatial frequency domain, this translates into the
product of the sample spectrum with the convolution of
the illumination and detection generalized apertures, ob-
tained by transformation according to Eq. (6):

5 lkPA(kP) = = =
Ps(q7s?kp) = T[mill(q78’kp) ® mdet(q,sakp)]x(qys)
=ik,A(k,)CTF(q,s,k,)X(q,5). (13)

The convolution of the two sphere caps defined by the
generalized apertures leads to the three-dimensional co-
herent transfer function CTF=1/2m;® Mg, Which has
the unit of meters here. In the case of three-dimensional
scanning the signal recorded in an individual
wavenumber-channel indeed leads to a linear filtering
process, with the CTF defining the filter in the spatial fre-
quency domain. This powerful concept was mainly pro-
moted by Sheppard et al. [21]. The present derivation fol-
lows closely their work, but emphasizes the importance of
the wavenumber %, to arrive at a meaningful expression
for the FDOCM signal.

To evaluate the CTF, by geometrical considerations, as
depicted in Fig. 3, the intersection of the two spherical
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Fig. 3. (Color online) (a) Schematic of the convolution of two spherical shells, creating a circular overlap region. (b) CTF for identical
generalized apertures with Gaussian modes and NA=0.5 and x=0.7. (¢) The three-dimensional inverse Fourier transformation of the

CTF produces the PSF (k,=27/)\, and \,=780 nm).
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shells, offset by Q=(q,s), is identified as a circle with ra-
dius §=(k§—Q2/ 4)Y2. To compute the convolution at a
given point Q it is sufficient to evaluate the integral along
this line, although the surface element Ao(q,s) of the
cross-section of the cap intersection volume has to be con-
sidered. Although the sphere caps are infinitesimally thin
here, it can be shown by computing the precise overlap
volume between two shells of decreasing thicknesses that
a correction term Ao(q,s) =k12,/ (éQ) remains. Substituting
from Eq. (7) and using the fact that on the intersection
circle by definition €,=Q2=k,, we obtain

A
CTF(g,s) = 47 j ”ﬁf( ql)ﬂﬁé(f%)g—;dﬁ
17 kp kp

4772f2 Pe ~ Py q1 Py g2
= Q B my (fa)mdet<fa>d’8’ (14)

where g; and g, are functions of B, used to parameterize
the intersection circle. Decoupled and distinct illumina-
tion and detection apertures are considered here. Since
both modes travel through the same objective, identical
NAs are however assumed, and the integral is taken
twice from B;=-w/2 to B.=u/2 if s/2>&/Q+k,(1

-NA)Y2 and  By.=+sin ! [Q(s/2-k,(1 NA2)1/2)/(§q)]
otherwise.

For numerical evaluation, it is more convenient to
evaluate the integral as a function of s;. Performing a
change of variable where pB= sin‘l[Q(sl s/2)/(&)]
and  using Mityaet(8) =M (A1 =510/ k) V?) =g (1
—31,2/k V2)(51/9/ Q1/2) V2 leads to

Ry
CTF(q,s) = Tf Min(51)Mget(s = 1)

dSl

§2q2 s 2’
Q_(2>

Here, s;=k,(1-NA%)'2 and s,=s-s; if s<k,+k,(1

A2)1/2, and si=s—k, and s,=k,, otherwise. The CTF
can be interpreted as the convolution of the illumination
and detection generalized apertures as a function of their
axial spatial frequencies, in the presence of an additional
Kernel that depends on g, s, and s;. For numerical imple-
mentation the modes are discretized at the points s[n]
=2k, (1~ NA2)Y24nAs, sqlj]=k p(1- NA2)Y24jAs, with As
~9%k. »(1-(1-NA%H12)/(N-1) and nel0,N-1], je[0,N/2
—1]. The lateral spatial frequency is represented as ¢
=mAq, with Ag=2k,NA/(M-1), q €[0,M-1]. To circum-
vent the singularity in the Kernel, it is integrated analyti-
cally, and the expression for the CTF at a given dis-
cretized spatial frequency n,m becomes, for m >0,

(15)

4Pl
CTF[n,m]=—— >, myljliauln —j1(W.[n,m,j]

J=a

-W_[n,m,jl), (16)

where
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( _As s[n])
Q[n,m] S[]]i?—T

-1
Wt[n’mx]]_sul q[m]g[n’m] ’ (17)

and a=0, b=n for n=N/2-1 and a=N-n, b=N/2-1 for
n>N/2-1. For the case m=0, CTFn,m=0]
=(87°1%/Q)min(s[n]/2)Mget(s[n]/2).

Although the arcsine computations are computation-
ally rather costly, this expression can be evaluated nu-
merically. Figure 3 displays the result for the case of illu-
mination and detection apertures, which are both
identical to the aperture illuminated with a Gaussian
beam used previously (cf. Fig. 2). Here, N=2048 and M
=1024, and the computation with a 2.13 GHz dual core
Intel Xeon based personal computer with 4 Gbytes DDRII
SDRAM took approximately 10 min.

Despite the infinitesimally thin sphere caps of the gen-
eralized apertures, the CTF gives rise to nonzero trans-
mission coefficients within a volume in the three-
dimensional spatial frequency domain. The CTF describes
the spatial frequencies of the sample susceptibility that
can be accessed by measuring the scattered field in a con-
focal imaging system at a monochromatic wavelength £,,.
The convolution of the generalized apertures has in-
creased the axial and lateral support by a factor of 2 com-
pared to the initial apertures in the presented case. The
support in each direction defines the resolution in the cor-
responding spatial coordinate, evidencing the resolution
advantage of a confocal setting compared to a wide field
configuration. While the transmission profile for lateral
spatial frequencies is of a low-pass type, in reflection
mode, axial spatial frequencies are transmitted within a
bandpass window.

E. FDOCM Signal

The motivation of spectral domain OCT is to retrieve the
sample structure along depth in parallel without axial
scanning. Looking at the FDOCM system as a wavenum-
ber multiplexed interference microscope, each
wavenumber-channel has its own specific CTF. Figure
4(a) shows the CTFs of three different wavenumbers £,
—AkFWHM/Z, kcr and kc+AkFWHM/27 with AkFWHM=k0/5
and k. being the central wavenumber. The CTF's of the
different wavenumbers are similar and have a point sym-
metry about the origin with additional amplitude scaling
by 1/k,. As seen in Fig. 4(b), this scaling normalizes the
integral [CTF(q,s,k,)ds, since the support increases with
k, at the same time as the amplitude decreases with its
inverse.

The CTF defines which spatial frequencies of the
sample can be assessed by a specific wavenumber-
channel. But in order to retrieve the spatial sample infor-
mation, the sample also has to be sampled correctly. The
sampling points in the spatial frequency spectrum are de-
fined through the discrete spatial sampling steps of the
confocal setup. Only when the Nyquist frequency is re-
spected can the spatial frequency information indeed be
retrieved. While the sample is scanned in the lateral di-
rection in spectral domain OCT, the axial direction is
omitted, and the information along the axial spatial fre-
quency within the CTF is not captured. A two-
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Fig. 4. (Color online) (a) CTF for Gaussian illumination with NA=0.5 and «=0.7 for three different wavenumbers. (b) Plot of the same

three CTFs shown in (a), at ¢=0, evidencing the scaling of the CTF with &,. The amplitude decreases along with an scaling of the support
length, making the integral of the CTF along s at ¢=0 constant. (¢) Simulated tomogram of idealized scatterers, aligned along the optical
axis spaced by 10 um in logarithmic scale (k,=27/\, and \,=780 nm, Akpwpy=k./5).

dimensional signal is recorded for each spectral channel.
In the spatial frequency domain this corresponds to tak-
ing the projection of the product of the sample structure
and the CTF along s, which is equivalent to the confocal
signal at z=0,

Py(q,ky)|.z0 = ik, Alk)) f CTF(q,s,k,)X(q,s)ds. (18)

Instead of using axial scanning to access the axial spa-
tial frequencies, spectral domain OCT uses the fact that
the CTF's of the wavenumber-channels occupy each a dis-
tinct volume in the spatial frequency domain. Although
the axial information within an individual channel is not
resolved, the combination of signals from all the channels
gives access to the axial spatial frequencies in the range
of the system’s CTFs at the accessible source wave-
lengths.

For this spatial frequency sampling to work correctly,
the support along s of the CTF's should be as short as pos-
sible. As discussed, they extend however over a finite
range along s, and the CTF's of neighboring wavenumber-
channels overlap, which confuses the correct sampling of
the sample information.

The classical way to reconstruct the tomogram is to

take the inverse Fourier transformation of f’s(q,r) from
k, to z. Taking into account the scaling of the z-coordinate
by a factor of 2, the tomogram becomes

T(q,2) = f P (a,k,)exp(i2k,2)dk,
k

D

=i f k,A(k,) f X(a,5)CTF(q,s,k,)ds
k s

D

X exp(i2k,z)dk,. (19)

In this general form it is difficult to further simplify the
expression. If it was assumed that the CTF would not
scale with £k, but merely shift along s, one could
write CTF(q,s,k,)=CTF(q,s,k.) ® 8(k,—k,)=CTF(q,s
—2(k,-k.)) and identify the inner integral as the convolu-
tion of the sample spectrum with the CTF. In this case

T(q,2) =A'(z) ® [CTF(q,2)¥(q.2)]. (20)

Here, A'(z) =fikpg(kp)exp(i2kpz)dkp ~i2kA(z)
Xexp(i2k.z) defines the axial resolution of the system, ac-
cording to the spectral width of the light source. In this
form, the additional factor ik, differentiates the classical

coherence gate A(z)=]. A(kp)exp(iQkpz)dkp. The effect of
this derivation is however negligible since the Gaussian
spectrum is centered at k.. The exponential term
exp(i2k.z) acts as a high-pass filter.

The action of the CTF in this representation is now dis-
closed: after transformation from s to z it imposes an axial
envelope, defining an axial range within which the signal
has appreciable values, and contributes to the DOF. The
length of this envelope is inversely proportional to the
width of the CTF support along s. This effect is indepen-
dent of the defocusing, which only comes into play in the
spatial coordinates after transformation of the above ex-
pressions from q to r, and will be analyzed in the next
section. The physical meaning of the reconstructed tomo-
gram is also revealed: the signal is indeed proportional to
the high-pass filtered sample susceptibility, thus evidenc-
ing mainly the variations in the squared refractive index.

A further approximation for the CTF can be taken in
the case of very small NAs. In this situation, the support
of the CTF along the axial spatial frequency becomes neg-
ligibly small and can be approximated as CTF(q,s,k),)
=CTF'(q)&(s-2k,). Equation (19) simplifies in this case to

T(q,z) = if kpA(kp)CTF’(q)):((q,2kp)exp(i2kpz)dkp.
kP

(21)

The tomogram can be described as a linear filtering
now. The lateral support of the filter is defined by the CTF
and the axial extent by the spectrum of the employed
light source, as described by Coupland [19]. In the general
case, however, and especially for higher NAs, this ap-
proximation cannot be taken since the width along s of
the CTFs increases *NA2Z whereas the lateral width
progresses only linearly with the NA.

3. SIMULATION

To investigate the various effects and limitations imposed
by the CTF, we take idealized point-like scatterers
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aligned along the z-axis as a sample structure to compute
numerically the expected tomogram

X(,s) = f 2 8z —nlAz)exp(-iQ-r)dQ = 2 exp(-isnAz).

(22)

Computing expression (19) with this sample structure
corresponds to taking the Fourier transformation of the
CTF at given z-positions and for each wavenumber k,. In
practice this was achieved efficiently using the chirped
z-transform, which allowed using a single computation of

the CTF and subsequent scaling of the support vectors.

After multiplication with kpA(kp) and consequent Fourier
transformation the simulated tomogram was obtained.
For the simulation, k.=27/\., was set to \,=780 nm,
Akpwam=k./5 unless otherwise stated, and the whole
k-support of 2048 wavenumber-channels spanned a range
of 3.5 times Akpwpy to avoid ringing. The specified NAs
express directly the opening angle of the objective, assum-
ing an objective without immersion.

Figure 4(c) shows the result for the case of the previ-
ously described Gaussian optics with NA=0.5. The very
short DOF is obvious, and outside the focal plane the sig-
nal is severely blurred and reduced in amplitude. The to-
mogram is plotted in the logarithmic scale, taking
20 logo(T'(x,2)).

In order to gain further insight into the mechanisms
that degrade the tomogram and define the short DOF, we
constructed  hypothetical CTFs, which—although
synthetic—help to understand the underlying principles.
All the CTF's at a given NA were matched to have an in-
focus resolution identical to the Gaussian case of the
same NA. For this, the projections of the CTFs along s
were matched to the Gaussian CTF. Three different CTFs
were constructed and are presented in Fig. 5 for NA=0.5.
Based on the CTFs, the corresponding tomograms were
computed, again by taking into account the scaling of the
CTF with %, and its point symmetry about the origin.

In the first case [Fig. 5(a)], the CTF was defined with a
very narrow envelope along s, separable from its
g-dependence which was matched to the Gaussian CTF.
The tomogram in Fig. 5(d) is nearly ideal with an unal-
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tered lateral resolution and a nearly constant signal am-
plitude over the considered depth range. The short
s-support avoids confusion of the spatial frequency sam-
pling by the different wavenumbers, and the Fourier
transformation of the short s-support produces a very
large z-envelope. This situation would result in a near-
linear filtering, analogous to a very low NA system, as dis-
cussed before.

The second CTF [Figs. 5(b) and 5(e)] likewise features
separable ¢ and s-envelopes. In this case, the axial enve-
lope was however matched to the Gaussian case CTF(q
=0,s). Here, the large support along s defines a very short
axial envelope, suppressing the signal outside the focal
plane. Still, the lateral resolution remains invariant as a
function of depth, as in the previous case.

While the width of the CTF along the axial spatial fre-
quency imposes an amplitude envelope, it does not affect
the lateral resolution. The lateral blurring of the signal is
induced by the defocusing, which originates in the curva-
ture of the CTF. Figures 5(c) and 5(f) display the CTF and
the tomogram for a CTF with still the same lateral enve-
lope, but a support that defines a sphere cap with radius
2k,, analogous to the curvature of the Gaussian CTF.
There are no longer separable envelopes along g and s in
this case. The resulting tomogram is marked by a clearly
defined short DOF, outside of which the scatterer signals
are severely blurred.

Indeed, the short width along s correctly samples the
spatial frequencies without confusion and without impos-
ing an axial amplitude envelope. However, the position of
the albeit very short CTF support is shifted along s as a
function of ¢ according to the CTF curvature. But for
FDOCT’s reconstruction algorithm to work correctly, the
CTF should sample a single axial spatial frequency s in a
given wavenumber-channel. Representing the tomogram
in the lateral spatial frequencies, T(q,z), the effect of the
defocusing is not yet manifest, and the signal indeed ex-
tends over a long axial range for the discussed CTF. But
according to the sifting-theorem, the CTF’s curvature in-
troduced a phase offset as a function of q upon transfor-
mation from s to z. After the transformation from q to the
spatial domain r the various spatial frequency compo-
nents add up constructively only in the focal plane, where
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Fig. 5.

(Color online) (a) Ideal CTF with very short support along s and no curvature. (b) Broad CTF, with separable ¢ and s envelopes.

(c) Cap CTF, with short s support, but curvature of radius 2%,,. (d), (e), (f) Tomograms produced with CTFs in (a), (b), and (c), respectively.
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Fig. 6. (Color online) (a) Signal amplitude of idealized scatter-
ers, positioned on the optical axis as a function of the out-of-focus
distance, for the three idealized configurations presented in Fig.
5 and the realistic case in Fig. 4 at NA=0.5. (b) Signal amplitude
at a given out-of-focus distance of 75 um for the same configura-
tions as in (a), but with varying NA. (¢) hwhm of the scatterer
signals for several configurations as a function of the out-of-focus
distance.

the phase offset is zero, and define a diffraction limited
spot. But outside the focal plane the introduced phase
variation blurs the signal heavily.

Figure 6 compares the synthetic configurations with
the simulation of the realistic Gaussian-like scenario. The
signal amplitude of the point-like scatterers as a function
of z reveals that the defocusing effect and the amplitude
envelope imposed by the width of the s-support contribute
equally to the extent of the DOF. The observed DOF in the
realistic scenario is the product of both the transform
limitation of the axial envelope and the defocusing. Fig-
ure 6(b) displays the signal amplitude at 75 um from the
focal plane as a function of the NA. The NA of the Gauss-
ian case was varied, keeping « constant, and for each
Gaussian template-CTF the synthetic versions were de-
rived. Independent of the NA, the contribution of the
transform limitation and the defocusing remains equal.
In Fig. 6(c) we extracted the lateral half-width at half-
maximum (hwhm) of the lateral spots by tracking the
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axial local signal maximum, starting at r=0. The blurring
for the realistic and the sphere cap CTF are identical,
while the CTF's with separable q and s variables produce
no defocusing at all.

So far, all the simulations took the scaling of the CTF
with &, into account. As well the widths of the lateral q-
and the axial s-support increase with k,, in hand with a
decrease in the transmission amplitude. The approxi-
mated situation of a constant CTF simply shifting along s
would result, by using Eq. (20), the definition of the prob-
ing sample [Eq. (22)], and the associativity of the convo-
lution, in

T(r,z) =PSF(r,2)| A'(2) ® D, Sz-nhz)|.  (23)

In this case, a point-spread function (PSF) can be evi-
denced and is directly given by the transform of the CTF,
PSF(r,z)=/CTF(Q,k.)exp(iQ-r)dQ, defining the lateral
blurring of the scatterers independent of the spectral
width of the light source. The axial position on the other
hand is revealed by the spectral interference pattern. An
out-of-focus scatterer becomes in this approximation a flat
disk, with its radius defined by the width of the PSF and
the thickness by the coherence gate. As noticed before and
shown in Fig. 7 in detail, the scaling of the CTF with £,
results in a curving of the out-of-focus scatterer image.
The coherence gate locates signals according to their
group delay. Because the outer shell radius of the CTF
changes as a function of %, the resulting group delay is a
function of the lateral position of the scattering particle,
and contrary to the approximated model of a constant
CTF, the tomogram of the scanned particle is no longer lo-
cated on a plane z=const, but on a curved surface.

Despite its limitation, it might still be very attractive to
judge on the expected DOF and lateral resolution of the
system based on this simplified model, since the simula-
tion of the tomogram of the scatterers is by far less com-
plex in this case. To further investigate the limitations
and accuracy of the simplified model, Fig. 7(b) compares
the signal amplitude of the simulated scatterers with the
envelope defined by the direct transformation of the cen-
tral wavenumber’s CTF. The simplified model very accu-
rately predicts the signal amplitude, and can thus be used
to judge on the available DOF. Even with increasing spec-
tral width of the light source, the amplitude of the scat-
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Fig. 7. (Color online) (a) Detailed view of out-of-focus scatterers for NA=0.5 evidencing the axial curvature of the signal in the tomo-
gram. (b) Comparison of the axial signal amplitude of the simulated scatterers with the envelope imposed by the PSF of the central
wavenumber. Inset: Detailed view of the peak splitting of the scattering signal for various spectral widths. (¢) Scattering signal in the
lateral direction for the in-focus and out-of-focus (z=50 um) situations, for the accurate model simulation and the direct PSF prediction.

The legend applies to both (b) and (c).
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tering signal on the axis is unaltered. In the accurate
model, however, the increasing bandwidth induces fur-
ther artifacts, resulting in a peak splitting of the out-of-
focus scatterers as indicated in the inset in Fig. 7(b). De-
spite this effect, the lateral definition, obtained by
tracking the peak maximum in the lateral direction along
its curved shape, corresponds well to the value predicted
by the simplified model. The scaling with &, smooths how-
ever the lateral signal envelope. At a given wavenumber
the PSF might exhibit a zero in the field amplitude at a
certain radial position. But this position is a function of
k,, and thus averaged in the tomogram signal of the ac-
curate model. The effect on the hwhm of the signal peak
can meanwhile be safely ignored.

Despite all these effects, for the spectral bandwidths of
most light sources, Ak <k, holds, and the on axis ampli-
tude of the signal peaks is accurately predicted by the
transform of the central wavenumber’s CTF(q,s,%,.), as if
the scaling of the CTF with k&, was ignored. This is an im-
portant finding since computing the CTF for the central
wavenumber as a function of the system parameters and
its transformation to spatial coordinates allows one to
judge accurately on the expected DOF, limited by both the
defocusing and the axial envelope.

4. DISCUSSION

Using theoretical tools developed for conventional micros-
copy, we have proposed a model providing a description of
the signal recorded by FDOCM and the reconstructed to-
mogram. The image formation in confocal microscopy, ob-
tained by three-dimensional scanning, can be expressed
as a linear filtering process where the scan in each direc-
tion results in the convolution of the sample structure
with the PSF, i.e., the sample spectrum is filtered by the
system transfer function. FDOCM, on the other hand, re-
places the axial third scan with the multiplexed detection.

Ideally, FDOCM should measure ¥(q,s). The recorded sig-

nal however provides Ps(q,kp) [Eq. (18)]. Instead of sam-
pling the spatial frequency spectrum on a regular grid in
the q,s-domain, the sampling occurs as a function of the
wavenumber-channel’s specific CTFs.

The CTF defines which spatial frequencies of the
sample are accessible by a given wavenumber-channel,
and it spans a volume in the spatial frequency domain.
The width of this support in the lateral direction defines
the lateral resolution. Importantly, the exact amplitude
envelope of the CTF also influences the final lateral PSF.
For the Gaussian-like illumination, this envelope indeed
features a very smooth shape, but when distinct illumina-
tion and detection apertures are combined, this is not nec-
essarily the case. The essential finding of this work is that
both the curvature of the CTF and its width along s con-
tribute to the limitation of the DOF with two fundamen-
tally different mechanisms. As a function of depth, the
curvature induces a defocusing due to a pure phase offset
of the various lateral spatial frequency components. The
signal energy is not reduced in this case but simply
blurred laterally. However, if the axial width of the CTF
becomes significant compared to the wavenumber-
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channel spacing, the spatial frequency information be-
comes increasingly confused, leading to reduced signal
energy.

In the spatial domain, the physical setting seems more
intuitive at first. The illumination and detection optics
create a specific focal volume, i.e., PSF, with a character-
istic DOF. Since scanning is performed only in the lateral
directions, the sample structure lying outside the focal
plane is blurred. Instead of leaving a diffraction limited
spot, the trace of a single scatterer now extends over a
larger area. But integrating the energy of this spread
does not amount to the same value as in the case of the
in-focus situation, because at each scanning position, the
particle has only received a small fraction of the illumina-
tion power. Correspondingly, the backscattered photons
were also detected with a lower efficiency as compared to
the in-focal plane, leading to the observed axial amplitude
envelope. Whereas these two effects are inherently linked
in the spatial domain, the representation in the spatial
frequency domain separates them into two independent
mechanisms.

The view in the spatial domain becomes increasingly
complicated if it is considered that the focal volume de-
pends on the wavelength and that the phase-fronts away
from the focal volume are curved. Furthermore, the focal
volume in OCT is most often considered as being Gauss-
ian. This is a safe assumption for a simple model and low
NA. But striving for a more accurate expression of
FDOCM, the Gaussian model, which is based on the
paraxial assumption, comes to its limits. Although a
Gaussian beam corresponds qualitatively well with the fo-
cal volume computed by means of the CTF and a Gauss-
ian field distribution in the generalized aperture, it ob-
scures the clear view on these two fundamental
mechanisms. Reasoning in terms of spatial frequencies
rather than spatial coordinates turns out to be more illus-
trative. The convenience of the present model is that the
inputs are the illumination and detection modes in the in-
put principal plane of the sample objective, where
paraxial assumption can safely be made.

In order to find a simpler expression, we approximated
the different wavenumber’s CTFs by simply shifting the
one of the central wavenumber %, along s. The true varia-
tion of the CTF with £ introduces additional imperfec-
tions in the tomogram. With the simulation we could,
however, verify that the simplified formulation already
gave a good indication of the system’s performance. It
models both effects that limit the signal in the axial di-
rection accurately, which was the purpose of this work.

The axial envelope imposed by the CTF’s s-support
seems easily to be corrected for numerically by a simple
division. Indeed, the lateral blurring is more disturbing
since it confuses the sample structure, while the axial en-
velope is a mere amplitude scaling. Several works [6,7]
aim at a digital correction of this lateral blurring with a
deconvolution approach. In the work of Ralston et al.
[8,14], a careful analysis of the FDOCT signal using
paraxial Gaussian optics was performed. The defocusing
is identified as the source of the lateral blurring of the
FDOCT signal. The additional amplitude envelope due to
the CTF’s s-support seems, however, less evidenced in
that approach. The proposed algorithm interpolates the
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measured data at each lateral spatial frequency in s in or-
der to correct for the curved CTF support. The FDOCT re-
construction algorithm pretends the spectral data of a
given k,, to originate from a single axial spatial frequency.
With this interpolation, the spatial frequencies are moved
back to their true origin and avoid the defocusing effect.
However, in order to apply digital correction algo-
rithms, the signal first needs to be recorded with a suffi-
cient signal to noise ratio. Both defocusing and the axial
envelope decrease the signal amplitude away from the fo-
cal plane. Although FDOCT systems have very high sen-
sitivities above 100 dB, the dynamic range is in general
limited to about 40 dB [27]. The simulated tomograms
presented in this work were all normalized, but in a real-
istic sample, scatterers with a wide range in scattering
strength will be present. In the case of the presented
Gaussian system [Fig. 4(a)] with NA=0.5, the signal will
be lost about 20 um off the focal plane even in the most
ideal case of a scattering signal that would use the full dy-
namic range available. Although the refocusing should
theoretically increase the 40 dB range to more than
150 um, it is not possible to record the signal at such out-
of-focus positions. A second limitation to this digital post-
processing is imposed by the necessary sampling condi-
tion. In order to have access to the lateral spatial
frequencies over the whole CTF support, the Nyquist cri-
terion has to be fulfilled. Albeit, more critical is the re-
quirement for the phase of the signal, which should be
stable over the whole two-dimensional scan. This is a con-
dition that is challenging to meet with a living specimen.
Instead of numerical correction, many hardware at-
tempts to circumvent the limited DOF of FDOCM sys-
tems were made. This is equivalent to designing a specific
CTF that is better suited for FDOCM rather than correct
the artifacts introduced by a less suited CTF. Indeed, with
the current model at hand, we are now in the situation to
formulate the criteria for the ideal CTF for FDOCM:

e Short s-support
e No curvature
e Smooth lateral envelope

As seen in the simulation results, such a CTF would re-
sult indeed in an artifact-free tomogram and should pro-
vide an unaltered spatial resolution along an extended
DOF. The challenge resides in finding a real CTF ap-
proaching this ideal case.

It is interesting to consider which CTFs can be ob-
tained in practice. Assuming circular symmetry, the CTF
is a two-dimensional function of ¢ and s, defined however
by the two one-dimensional aperture functions of the illu-
mination and detection modes. At each axial frequency s,
the CTF is defined by the shifted overlap of the two gen-
eralized apertures, sampled as a function of s. The kernel
in Eq. (15) further weighs this overlap and projects it
along q. The properties of this kernel limit the set of
achievable CTFs. If identical illumination and detection
apertures are used, the overlap has an additional symme-
try, reducing further this available set. Decoupled aper-
tures on the other hand give an additional degree of free-
dom in designing the system’s CTF.

Using Bessel-like beams produced with an axicon lens
[28] is a common hardware approach to obtain an ex-
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tended DOF [9-12]. Such Bessel-like beams indeed propa-
gate over long distances without apparent diffraction and
with an invariant radial envelope. Unfortunately, this en-
velope features many strong sidelobes. Whereas all these
works use the identical illumination and detection optics,
we have previously reported on an extended focus scheme
for FDOCM [13,29], where we use an axicon lens to illu-
minate the sample, but detection occurs over a decoupled
Gaussian aperture. To illustrate the effect of these differ-
ent optical schemes, the CTFs at the central wavenumber
for three configurations are compared in Fig. 8: first a
Bessel-Bessel configuration, where both illumination and
detection occur through the same optical path comprising
an axicon lens; second, the Bessel-like illumination with
decoupled Gaussian detection; and, third, a Gaussian con-
focal configuration, analogous to the previously discussed
realistic scenario. For these computations an objective
with an NA=0.3 was taken. Using simple plane wave
spectrum beam formulation and modeling the axicon as a
phase element with a linear phase in the radial direction,
we propagated the Bessel-like pattern behind the axicon
through a lens to the principal plane of the sample objec-
tive, where a ring-like illumination pattern was obtained.
Using the formalism of the generalized aperture, the in-
tensity pattern in the focal volume exhibited its first in-
tensity zero in the lateral direction at p=1.3 um, and the
intensity-FWHM in the axial direction extends over more
than 300 pum.

The CTF for the Bessel-Bessel configuration, displayed
in Fig. 8(a), approaches the near-ideal scenario [Fig. 5(a)].
The CTF exhibits no curvature and extends over a small
range along s only. The drawback of this architecture is
revealed when looking at the projection of the CTF along
s, revealing the transmission amplitudes of the lateral
spatial frequencies in the focal plane. Whereas a large
support of lateral spatial frequencies is available, the
transmission profile reveals a very strong and narrow
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Fig. 8. (Color online) (a)-(c) CTFs at the central wavenumber
for (a) Bessel-like illumination and detection, (b) Bessel-like illu-
mination with Gaussian detection, and (¢) Gaussian illumination
and detection, producing identical in-focus lateral resolutions of
1.3 pm. (d) Projection of the same CTF's along the s direction, evi-
dencing the transmission coefficients for the lateral spatial fre-
quencies for the in-focus plane.
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peak at ¢ =0 and a second maximum just before the cutoff
frequency. Most parts of the large support suffer from a
transmission penalty compared to the central peak of up
to 30 dB. The limits of the system’s dynamic range are
thus rapidly reached, and then the large support of spa-
tial frequencies is lost. Even more, the strong central
peak corresponds to a very low NA system transmission
profile. Disregarding the issue of limited dynamic range,
the resulting tomogram is the superposition of a very low
NA acquisition and a much fainter high NA signal, ren-
dering a correct interpretation of the tomograms difficult.
The CTF of the decoupled Bessel-Gaussian configura-
tion shown in Fig. 8(b) exhibits curvature, ultimately lim-
iting the DOF by lateral blurring. Compared to the confo-
cal design with identical Gaussian apertures and
comparable lateral resolution [Fig. 8(c)], however, the
s-support is reduced, significantly increasing the axial
signal envelope. Most importantly, the projection of the
CTF along s now shows a relatively smooth envelope, re-
sulting in tomograms with good contrast and that are
easy to interpret. However, the Gaussian optics still intro-
duces defocusing and limits the scalability to higher NAs.
This study was performed considering a spectral or
Fourier domain system, with a discrete wavenumber
sampling. This allowed one to express the individual
channels as monochromatic waves and simplified the for-
malism. To extend the reasoning also to time-domain
OCT, the time dependence of the expressions has to be
maintained in a general way and averaged in order to find
the detected intensity signal. This results in an integra-
tion along the wavenumber %, analogous to the discrete
Fourier transform of the tomogram reconstruction in
FDOCT. Together with the variation of the path differ-
ence in the reference arm, the outcome is in this case
identical to the presented analysis, except that the wave-
number is no longer binned into discrete wavenumber-
channels, but represented as a continuous variable.

5. CONCLUSION

In this work, an expression for the FDOCM signal using
the principle of the generalized aperture and the CTF was
derived. This approach illustrates the spatial frequency
sampling of spectral domain OCT. In FDOCM, the signal
is acquired in parallel in a set of wavenumber-channels,
each defined by its specific CTF. With synthetic tomo-
grams of idealized point-like scatterers it could be shown
that the CTF induces a limited DOF by two distinct
mechanisms: first, by a defocusing due to its curved shape
and, second, by an amplitude envelope, imposed by the
width of the CTF along s. Although intrinsically linked,
the use of decoupled illumination and detection apertures
should allow designing improved CTFs that reduce these
disturbing effects and would be better suited for FDOCM
than current approaches. The developed model could also
serve as a basis for digital post-processing, correcting for
the imperfections introduced by non-ideal CTF's. Future
developments will show which strategy—CTF design,
post-processing, or a combination of both—is more appro-
priate to overcome the limited DOF in FDOCM.
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